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Abstract
While long since outclassed in terms of the qual-1

ity of their musical output, cellular automata (CA)2

merit continued interest as an artistic tool due to3

their intuitive operation, ease of modification and4

low computational cost. CA are typically trained5

to produce musical output using some form of re-6

semblance measurement between CA output and an7

existent body of (human) composed music as a fit-8

ness criterion. However, this approach runs directly9

counter to the long history of algorithmic compo-10

sition as a medium where the use of an artificial11

agent is seen as an emancipatory practice, intended12

to move beyond human aesthetic sensibilities. In13

recognition of this tradition we utilize a Detrended14

Fluctuation Analysis (DFA) as a fitness criterion in15

what we believe to be the first application of a DFA16

in the context of CA. We further test our novel fit-17

ness method against a range of CA configurations18

and demonstrate its robustness at finding meaning-19

fully patterned output for music generation.20

1 Introduction21

In its traditional form, the operation of a elementary or 1-D22

Cellular Automaton (CA) begins with a 1 × n vector of bi-23

nary values. At each time step, cells in the vector are updated24

according to a fixed set of update rules such that such that the25

value of cell j at time t + 1 where j ∈ {1...n} is a function26

of the state of j and the configuration of its neighborhood27

at time t. In effect rule-sets operate as a sort of lookup ta-28

ble. Traditionally cells are only every assigned binary values29

thus given a neighborhood size of m there are 2m+1 potential30

rule-sets, one for each unique configuration of neighborhood.31

The above schema is generalizable to an arbitrary number of32

dimensions and a wide array of mappings from cell states to33

rule-sets, perhaps most famously to the 2-D case in Conway’s34

Game of Life [Gardner, 1970]. Here we only consider the35

classical 1-D case.36

To generate music using a CA the typical approach as37

first characterized in [Beyls, 1989] is to assign a musical38

phoneme such as a note or instrument to a given cell j where39

j ∈ {1...n} in the initial vector of n values at time t = 0 and40

treat the resulting t×1 time series of j as an activation pattern41

for the given note or instrument. By assigning a phoneme to 42

each of the n cells one is able to generate a score in which 43

there is dependency between activations of different instru- 44

ments and thus a degree of harmony, melody and rhythm is 45

able to emerge. Unsurprisingly, a wide range of different ap- 46

proaches to mapping between CA output and musical input 47

have emerged over the years such as [Delarosa and Soros, 48

2020] and [Miranda, 1993], but the ’piano-roll’ approach de- 49

tailed above is perhaps the most common. 50

Over time CA have long been overshadowed by contempo- 51

rary neural networks (NNs) as a means of generating music 52

and we do not dispute the impressive ability of NNs to ar- 53

range patterns of sound as comprehensively shown in [Wang 54

et al., 2024]. However, we do wish to draw attention to the 55

implicit false equivalence between the ability of a device to 56

generate music and its usefulness as an artistic or musical 57

tool. Put another way, we disagree with the notion that the 58

automatic generation of music by NNs is useful or, for that 59

matter conducive to the artistic process. 60

Considered in this light, in terms of usefulness to the mu- 61

sician as a tool and not robustness of sound generation, CA 62

have several benefits overs NNs. First, unlike an NN the op- 63

eration of CA with its simple mapping of cell states to rules 64

to cell states, is intuitive thus allowing for their implementa- 65

tion and operation by those with only a limited coding back- 66

ground and for a lower barrier of entry for musicians without 67

a robust technical background. Additionally, CA with their 68

human interpretable rule-sets are not black boxes like NNs. 69

An individual is able to directly intervene into their opera- 70

tion and modify their underlying parameters with a degree 71

of understanding as to the outcomes. It is just this sort of 72

second-order engagement with the medium that allows for the 73

type of experimental and open-ended tinkering characteristic 74

of arts practice. Lastly, CA can be trained and implemented 75

on low-powered consumer hardware and do not require GPUs 76

or other specialized hardware as in the case of NNs. In effect 77

CA are far more conducive to artistic practice and excel as 78

tools within musical experimentation as opposed to the rote 79

composition of NNs that effectively only automate the musi- 80

cian’s surface level activity. 81

In spite of this CAs can be still be improved as an artistic 82

tool. Typically, due to the sheer number of potential rule-sets 83

for a CA, the process of finding an ideal rule-set is automated. 84

Consequently some form of fitness criterion is needed as a 85



proxy for the artist’s qualitative assessment to distinguish be-86

tween more or less desirable rule-sets. In the literature, fitness87

criteria that assess the degree to which the distribution of con-88

ditional probabilities between musical phonemes across time89

steps in the CA output is aligned with those in a given exem-90

plar or body of exemplars are the most common such as in91

[Delarosa and Soros, 2020]. In effect the degree to which the92

output resembles an already existing piece of music. How-93

ever, this runs directly counter to the long history of algo-94

rithmic composition in music. Traditionally, from such early95

practitioners as Arnold Schoenberg and members of Dada all96

the way up through Fluxus, John Cage and more recently Ian-97

nis Xenakis, the use of algorithms in the compositional pro-98

cess was seen as explicitly emancipatory. A means of moving99

away from or even beyond the bindings of human subjectivity100

and aesthetic sensibilities in composition. The use of a simi-101

larity metric between CA output and existing human compo-102

sitions, while being intuitive from an engineering perspective,103

ignores the long artistic tradition surrounding the underlying104

medium and makes itself deaf to the underlying poetics of the105

algorithm.106

All the same, a fitness criterion is required to be able to107

feasibly train a CA for musical output. As a result, we pro-108

pose the use of a Detrended Fluctuation Analysis (DFA), a109

means of measuring the scaling exponent α of fluctuations110

in a time series, as a fitness criterion. Existing studies have111

shown using a DFA that different genres of music inhabit dif-112

ferent regions of values of α [Jennings et al., 2003] [Streich113

and Herrera, 2005]. By linking fitness of CA output to partic-114

ular values of α, a musician is able to still assert some degree115

of authorship by broadly indicating the variance in fluctua-116

tions in the output over time, but still leaving the composition117

of those fluctuations undetermined. In effect, we believe the118

DFA is far more in alignment with the spirit of algorithmic119

composition while still granting artists a means of authorial120

control desired by many. Furthermore, to the best of our121

knowledge, this is the first instance of a DFA being used in122

the context of a CA, let alone as a fitness criterion in their123

training for musical output.124

In what follows we lay out in detail the configuration of CA125

utilized in Section 2.1, the workings of the genetic algorithm126

used for training the CA in Section 2.2 and in Section 2.3 we127

lay out the operation of our novel fitness fitness method in-128

cluding a step-by-step explanation of a DFA. Next in Section129

3.1 we present training performance of the various CA con-130

figurations which shows the rapid convergence of fit CA. In131

Section 3.2 we present a selection of trained CA outputs and132

show the wide variety of patterned behavior that can emerge133

from the DFA, thus showing its viability as a fitness criterion134

for musical composition. Finally in Section 4 we propose two135

future extensions of the work, provide our thoughts on poten-136

tial challenges that may be encountered as well as potential137

approaches to overcoming these challenges.138

2 Methods139

2.1 Cellular Automata140

All CA used were ’elementary’ or 1-dimensional as describe141

above except for slight modifications describe below. Rather142

than directly assigning values to cells using individual rules, 143

rules represent probabilities with which a cell will be assigned 144

the value one in the succeeding time step. We chose this ap- 145

proach for two reasons. First, to provide a continuous and 146

more flexible rule-set search space given the unknown dif- 147

ficulty of the fitness criterion. Second to provide a higher 148

degree of novelty at the time of trained operation, ideally ap- 149

ing the sort of improvisation and indeterminacy common in 150

musical performance. 151

Additionally, the neighborhood size of each cell was var- 152

ied across trials such that a cell’s update was a function of its 153

state and the state of its r immediate neighbors to the left and 154

r immediate neighbors to the right where r ∈ {1, 2}. Con- 155

sequently the size of the rule-sets changed across trials given 156

that a rule-set will contain 22r+1 individual rules correspond- 157

ing to each of the potential unique neighborhood configura- 158

tions. The number of initial cells n was also varied across 159

trials where n ∈ {5, 10}. 160

2.2 Training 161

A genetic algorithm was used to derive the CA rule-sets. An 162

initial population of 100 rule-sets was derived where p was 163

assigned uniformly at random for each of individual 22r+1 164

rules for each of the 100 sets. On each epoch each CA was 165

initialized with a randomized starting array where each cell 166

had the value 1 with probability p = 0.5 and 0 with probabil- 167

ity p = 0.5 in order to ensure robustness of performance of 168

any given rule-set. Each CA was then run for a total of 2048 169

time steps and the fitness of each CA was assessed using the 170

method detailed below. The 50 CA producing the 50 least 171

fit outputs were then discarded. From the remaining 50 CA, 172

individuals were selected in pairs with replacement and their 173

rule-sets were recombined using single-point crossover with 174

the crossover point being assigned randomly to each pair. The 175

subsequent two offspring were then mutated with probability 176

p = 0.1 such that a rule from within their rule-sets was se- 177

lected at random and the value m was added to it where m 178

was selected uniformly at random from [−0.35, 0.35]. The 179

above process of selection, recombination and mutation was 180

then repeated until an additional 50 new CA were produced. 181

The two sections were then combined to form the population 182

for the next epoch. The total process was repeated for 100 183

epochs for each of the possible combinations of r and n. 184

2.3 Fitness Method 185

As mentioned above, a Detrended Fluctuation Analysis 186

(DFA) was used to assess the fitness of each CA. First in- 187

troduced in [Peng et al., 1995], the DFA consists of first in- 188

tegrating a given time series such that: 189

y(t) =

t∑
i=0

x(i) (1)

where y is the initial time series and z is the resulting 190

integrated time series. The integrated time series z is then 191

segmented into non-overlapping blocks of uniform length γ 192

where γ ∈ [22, 23...2l] such that 2l does not exceed 1/2 the 193

length of y. The process is repeated for each value of γ. From 194



each block the linear trend is removed and the mean squared195

residual is calculated. Put symbolically:196

D(h, γ) =
1

γ

γ∑
m=0

(y(h+m)− (ŷh(m))2 (2)

where D(h, γ) is the computed mean squared residual of197

block h of size γ and ŷh is the linear trend of block h.198

The fluctuation for each value of γ is then calculated ac-199

cording to:200

F (γ) =

√√√√ 1

H

H∑
h=1

D(h, γ) (3)

The resulting fluctuation values for F (γ) are then placed201

on a log-log plot against the values of γ and a linear trend202

line is drawn through them. The resulting slope α, assuming203

a strong linear fit, characterizes the fluctuation dependencies204

across time scale. A value of α = 0.5 corresponds to white205

noise, α = 1.0 to 1/f or ’pink’ noise and α = 1.5 to brown206

noise [Ihlen, 2002].207

The fitness function utilized here can be expressed as:208

fitness(x) = rx − 0.5|α̂− αx| (4)

where x is the given CA output, α̂ is the target DFA scaling209

exponent, αx is the scaling exponent derived from perform-210

ing the DFA on x and rx is the goodness of fit of αx to the211

actual points of the log-log plot resulting from Equation 3212

across the values of γ. For our purposes α̂ was varied across213

[1.00, 1.25, 1.50].214

One particular challenge that needed to be addressed was215

the encoding of the t× n CA output array into a t× 1 vector216

suitable for use by the DFA. In order to accomplish this a217

simple binary encoding mechanism was used such that218

x′
j =

n∑
i=0

xji × 2i (5)

where x is the original t×n CA output, j ∈ [1...t] and x′ is219

the resulting encoded t× 1 time series. This creates a unique220

encoding in x′ for each potential configuration of any given221

time step in x. Additionally through this encoding schema,222

activations of cells with indices closer to n have a greater im-223

pact on the values of x′ and thus the degree of fluctuation of224

cells closer to n have a greater impact on the degree of fluctu-225

ation of x′. Given the DFA is closely tied to the fluctuations226

of a given time series, it predisposes the genetic algorithm to227

allow for greater leeway in the amount of fluctuation of ele-228

ments closer to 1 and less leeway in the amount of fluctuation229

of those closer to n. This uneven search terrain thus gives a230

musician an additional means of engagement.231

3 Results232

3.1 Training233

A total of ten trials were run for each possible configuration234

of α, r and n where α ∈ [1.0, 1.25, 1.5], r ∈ [1, 2] and n ∈235

[5, 10]. In all cases a population of 100 CAs were trained for236

100 epochs and the fitness of each CA was recorded at the 237

end of every epoch. For each configuration the results across 238

each trial were then averaged and are presented below. 239

Overall we see broad success on the part of the GA at find- 240

ing fit rule-sets across all configurations thus showing the ro- 241

bustness of the modified DFA as a fitness criterion. In ad- 242

dition we see that as α, n and r all increase so too does the 243

degree of difficulty for the GA. This is most pronounced with 244

increases in α and less so with increases in n and r. 245

In particular we can see in Figures 1 and 2 that the genetic 246

algorithm is quickly able to find suitable rule-sets to achieve 247

high fitness with a median fitness of over 0.95 and over 0.9 248

being achieved for α = 1.0 and α = 1.25 respectively. In 249

Figure 3 on the other hand we see that while the genetic al- 250

gorithm is able to find relatively fit solutions (with median 251

fitness exceeding 0.8 in all cases except for r = 2, n = 10) 252

it struggles far more so than with α = 1 or α = 1.25. This 253

seems to clearly indicate that α = 1.5 and its requirements of 254

greater fluctuation at larger time scales is a far harder criterion 255

than the other two cases. 256

For all values of α we see that the GA struggles more as r 257

and n increase. This is particularly pronounced with α = 1.5 258

where at r = 2, n = 10 its median fitness does not exceed 259

0.8. Overall this is not terribly surprising, as the total number 260

of cells and neighborhood size increases, the dynamics of the 261

CA become more complex and thus harder to control with a 262

single rule-set. 263

Lastly, it is important to address the degree of instability 264

in the minimum fitness across all configurations. We believe 265

this to be a result of both the probabilistic nature of the CAs 266

update rules and the randomized initial state for each CA in 267

each epoch. The former may have resulted in a CAs output 268

going wildly awry due to a poor series of ’dice-rolls’ on cell 269

update. The latter may have presented an otherwise fit CA 270

rule-set with an almost antagonistic starting condition. The 271

chance nature of these conditions gives rise to the high degree 272

of fluctuation in fitness minimum. 273

3.2 Trained Outputs 274

After training a final series of outputs from each CA was gen- 275

erated and recorded. For each configuration of α, r and n a 276

random selection of those exceeding a fitness of 0.9 in the 277

cases of α = 1 and α = 1.25 and those exceeding a fitness 278

of 0.8 in the case of α = 1.5 were set aside. The first 20 time 279

steps of these outputs is presented below. 280

What is immediately apparent is that the DFA based fitness 281

criterion is successful in engendering a wide variety of clearly 282

structured output in the CA. It is critical to bear in mind that 283

again, in keeping with the spirit of algorithmic composition 284

as an art form the success of the DFA criterion should not be 285

assessed in terms of how closely the outputs resemble mu- 286

sic. Rather, success should be viewed in terms of the variety, 287

novelty and presence of structure within the outputs and their 288

ability to serve as points of departure in and from human com- 289

position. The CA is here being positioned as a tool, not the 290

composer. 291



Figure 1: Training Performance with α = 1.0 where the lowest fitness of each epoch is represented in blue, the 25th percentile in red, the
median in green, the 75th percentile in purple and the highest fitness in orange

Figure 2: Training Performance with α = 1.25 where the lowest fitness of each epoch is represented in blue, the 25th percentile in red, the
median in green, the 75th percentile in purple and the highest fitness in orange

Figure 3: Training Performance with α = 1.50 where the lowest fitness of each epoch is represented in blue, the 25th percentile in red, the
median in green, the 75th percentile in purple and the highest fitness in orange

4 Discussion292

While the GA does seem to struggle particularly with the con-293

figuration α = 1.5, r = 2 and n = 10, overall the DFA is294

clearly a suitable fitness criterion robust to a range of different295

elementary CA configurations. More importantly, as demon-296

strated in 4, 5 and 6 its use as a fitness criterion results in297

CAs producing dizzyingly varied, but still clearly structured298

outputs. Their suitability as music is of course qualitative and299

would in no small part be a result of further artistic interpreta-300

tion on the part of a musician, however we believe their shear301

variety of structure shows the overall usefulness of the DFA302

as a fitness criterion as opposed to the probability distribution303

approach. Further we believe it to also show its increased304

alignment with the history of algorithmic practice.305

In spite of this there are still several clear areas for im-306

provement and further exploration. The most natural exten-307

sions of the present work from a technical perspective would308

be to move to higher dimensional CA or to utilize a Multifrac-309

tal Detrended Fluctuation Analysis (MFDFA) in place of the310

DFA currently utilized. The former extension would allow311

for a greater variety of dynamics and expressivity from the 312

CA output. In particular, dependent on the approach to cell 313

neighborhood, the distinct but related dynamics of different 314

dimensions ought to also allow for far more interesting and 315

nuanced approaches to mapping from CA output to sound. 316

A challenge in this process though will be the encoding step 317

from the multi-dimensional CA output x to the input vector 318

x′ for the DFA, where steps will need to be taken to ensure the 319

integrity of the separation between dimensions in the encod- 320

ing process or differing emphasis between CA dimensions. 321

The use of a non-linear kernel may be an effective approach. 322

The MFDFA, is the generalization of the DFA across sta- 323

tistical moments. Put another way, the DFA is simply the 324

MFDFA applied to second moment fluctuations. By using an 325

MFDFA across moments one is able to measure a spectrum of 326

α values thus producing a more granular characterization of 327

the fluctuation dynamics of the given time series (for a more 328

complete account of the MFDFA see [Ihlen, 2002]). Addi- 329

tionally, as has been shown in [Telesca and Lovallo, 2011], 330

musical genres have been shown to have distinct multi-fractal 331



Figure 4: Assorted Trained CA Outputs with α = 1

Figure 5: Assorted Trained CA Outputs with α = 1.25

Figure 6: Assorted Trained CA Outputs with α = 1.50

spectra. Utilization of the MFDFA in place of the DFA in332

the GA fitness function would allow for a higher degree of333

control in scultping the dynamics of the trained CAs. Addi-334

tionally it could allow for a greater resemblance between the335

CA output and a given musical genre or the intentional diver-336

gence of the CA output from a given genre depending on the337

practitioner’s preference. However, issues may arise for the 338

complexity of the MFDFA as a fitness criterion and it may 339

prove too difficult for the GA to find a suitable solution us- 340

ing the 1-D CA characterized here. This could potentially be 341

resolved using higher dimensional CA, a more robust GA or 342

more elaborate formulations of the 1-D CA. 343
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